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Abstract

On-demand routing protocols for ad hoc networks reduce the cost of routing in high
mobility environments. However, route discovery in on-demand routing is typically per-
formed via network-wide flooding, which consumes a substantial amount of bandwidth.
Therefore, it is essential to reduce the frequency of route discoveries to achieve efficient
communication. In this thesis, we present a technique called by-pass recovery that aims
to reduce the frequency of route request floods due to topological changes. Specifically,
when a broken link is detected, a node patches the effected route using neighborhood
information and thereby by-passes the broken link. We implemented a prototype of our
approach based on source routing. Simulation studies show that SLR (Source Routing
with Local Recovery) achieves efficient and effective local recovery while maintaining

acceptable overhead.
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Chapter 1

Introduction

An ad hoc network is formed by a group of autonomous wireless devices without de-
pending on any fixed infrastructure. Each node communicates directly with its neighbors
and functions as a router that forwards packets for nodes that are not within transmis-
sion range of the sender. Ad hoc networks provide fast and easy deployment due to their
self-organizing and infrastructureless nature. Such networks are ideal for situations where
building an infrastructure is time-consuming or costly, if not impossible. Mobile ad hoc
networks (MANETS) are viewed as suitable systems which can support specific appli-
cations, including networks for developing nations, emergency disaster relief, pervasive
computing and military applications. Ad hoc networks can also be useful in conferences
where people participating in the conference can form temporary networks without the
presence of fixed base stations and system administrators.

Although ad hoc networks provide numerous advantages, they have certain charac-
teristics that impose new implementation challenges, especially in routing. Maintaining
communication in ad hoc networks requires effective routing mechanisms in the presence
of dynamic topology, low bandwidth and limited battery power. Furthermore, radio link
related problems such as signal fading, interference, multipath, exposed and hidden ter-
minal, etc., can further complicate the task of a routing protocol in ad hoc networks.
Changes in network topology may cause route failures and require discovery of new

routes. However, route discovery can be expensive, often resulting in a network-wide



flood. Therefore, the challenge to routing in dynamic ad hoc networks stems from the
need to maintain routes while minimizing overhead from such maintenance.

Routing protocols for ad hoc networks can be categorized as proactive or reactive
(on-demand) based on when routes are discovered. Proactive protocols [28] maintain
consistent and up-to-date routing information regardless of the presence of traffic, thus
consume valuable resources such as bandwidth and power even if the network is idle. On-
demand routing has been shown to reduce routing overhead in highly mobile environments
by only maintaining actively used routes [33, 4, 27, 29, 16]. Although on-demand routing
protocols only initiate route discovery when a route is needed, such discovery is typically
performed via network-wide flooding. Since flooding consumes a substantial amount of
bandwidth and energy, it is essential to reduce the frequency of route discoveries, and so
network flooding.

To overcome performance problems from frequent route discovery attempts, hybrid
protocols incorporate both reactive and proactive protocol characteristics [11, 15]. Zone
Routing Protocol (ZRP) [11] and Cluster Based Routing Protocol (CBRP) [15] are exam-
ples of hybrid protocols that divide the network into zones/clusters and utilize reactive
protocols for inter-zone communication and proactive protocols for intra-zone communi-
cation. While hybrid protocols do not waste resources by flooding the network for each
route request, it is difficult to balance the cost of exchanging routing information peri-
odically (i.e., proactivity) and network-wide flooding for route discovery (i.e., reactivity)
(32].

Other protocols reduce the frequency of flooding by allowing an intermediate node
to initiate a limited route discovery in the event of a route failure [29, 36] or employing
local error recovery mechanisms [34, 3, 27]. However, protocols using either limited
broadcast or local recovery have focused on reducing packet drops and not on utilizing the

bandwidth efficiently during route recovery. Multipath routing protocols cache multiple



routes to a destination in a single route discovery [23, 19, 18, 26, 31]. However, in the
presence of mobility, mutipath protocols incur additional packet drops and delay due to
their dependency on potentially stale routes from caches. The goal of our research is to
improve local recovery to reduce the frequency of route request floods while maintaining
acceptable overhead.

This thesis describes a technique called by-pass route recovery that uses local query
messages to acquire information about the nodes in the neighborhood of a broken route.
The goal is to find a patch between one of the neighbors and a node along the route to the
destination, essentially by-passing the broken link. By-pass route recovery is supported
by having all nodes snoop ongoing communication to track their neighbors. By tying local
recovery to up-to-date information about a node’s neighborhood, the chance of recovering
a broken route increases compared to using potentially stale routes from caches. While
by-pass route recovery imposes some overhead to in terms of local recovery messages,
these messages only impact nodes in the one-hop neighborhood of the repairing node.
The key benefit of by-pass route recovery comes from this localization, which allows
scaling to large networks.

We demonstrate the effectiveness of by-pass route recovery in the context of SLR
(Source Routing with Local Recovery), a DSR-based on-demand routing protocol. In
SLR, efficient and effective local route recovery is achieved by combining route recovery
with an improved route invalidation mechanism that closely ties route validity to up-
to-date neighbor information. Results of extensive simulations show that SLR enables
quick recovery of broken routes, increasing the packet delivery ratio while maintaining

acceptable overhead.



1.1 Abbreviations

ABR
ACK
AODV
AODV-BR
AOMDV
CBR
CBRP
CHAMP
CTS
DAG
DCF
DSR
GPS
IEEE
LAR
MAC
MANET
NSR
RTS
SMR
SLR
TORA
TTL
WAR
ZRP

Associativity-Based Routing
Acknowledgment

Ad Hoc On-Demand Distance Vector
AODV with Backup Routes

Ad Hoc On-Demand Multipath Distance Vector
Constant Bit Rate

Cluster Based Routing Protocol

Caching and Multipath Routing Protocol
Clear to Send

Directed Acyclic Graph

Distributed Coordination Function
Dynamic Source Routing

Global Positioning System

Institute of Electrical and Electronics Engineers
Location-Aided Routing

Media Access Control

Mobile Ad Hoc Network

Neighborhood Aware Source Routing
Request to Send

Split Multipath Routing

Source Routing with Local Recovery
Temporally-Ordered Routing Algorithm
Time to Live

Witness Aided Routing

Zone Routing Protocol



Chapter 2

Routing in Ad Hoc Networks

Wireless communication is becoming increasingly popular due to the technological
advances in portable and wireless communication devices. There are two distinct ap-
proaches for enabling communication between wireless hosts. The first approach is sup-
ported by an infrastructured network, with fixed and wired gateways. The gateways in
such networks are called base stations. A mobile node within an infrastructured network
connects and communicates to the nearest base station in its communication range. As
a mobile node moves out of the range of one base station, a “handoff” occurs to a new
base station, and the mobile node is able to continue its communication without any
disruption.

The second approach is to form an infrastructureless network, commonly known as an
ad hoc network, among devices that want to communicate with each other. Infrasture-
tureless networks do not have fixed routers or base stations. All users participating in
such a network should be willing to colloboratively forward data packets to maintain an
operational network. Therefore, there is no need for handoff and location management
in the sense of an infrastructured network. However, in some sense, these problems still
exist in ad hoc networks where, for example, a node employs location management for
neighbor discovery.

Due to the limited transmission range of wireless network devices, nodes that are not

in range of each other communicate via intermediate nodes that act as routers. Figure



Figure 2.1 Example ad hoc network

2.1 shows an example of an ad hoc network with seven nodes. In this network, although
Node S and Node I are not in transmission range, communication between these nodes
can be established via Nodes H and T, which will act as routers and forward packets
between Node S and Node 1.

Since a message can traverse several hops before it reaches its destination, a routing
protocol is necessary to provide the establishment and maintenance of routes. In mobile
ad hoc networks, the routers are free to move randomly and organize themselves arbi-
trarily, thus the network’s topology may change rapidly and unpredictably. The dynamic
topology of such networks impose challenges on routing protocols. It is crucial for the
protocol to have the ability to detect broken routes fast enough and immediately react

to those changes. Additionally, an ad hoc routing protocol should incur low routing



overhead, since typical nodes in ad hoc networks have limited CPU capacity, storage
capacity, battery power and bandwidth.

There has been extensive research on routing protocols for ad hoc networks using
conventional routing protocols as underlying algorithms. Therefore, it is essential to
understand the basic operation of traditional routing protocols like flooding, link-state

and distance-vector, which are described next.

2.1 Conventional Routing Algorithms

2.1.1 Flooding

Many routing protocols in wireless networks use flooding (e.g., DSDV [28], AODV [29]
and DSR [16]) to distribute control information (i.e. a control message is sent from the
source node to all nodes in the network). Flooding operates as follows. The source node
sends the message to its neighbors, which in turn relay this message to their neighbors
until all nodes in the network have received the message.

Flooding obviously generates a vast number of duplicate packets and some sort of
sequence number is necessary to keep track of which packets have been flooded. Opti-
mizations such as Gossip-based routing [10] have been proposed to reduce the overhead
from flooding in wireless networks, where each node forwards a message with some prob-

ability.

2.1.2 Link-State Routing

In link-state routing [35], each node periodically collects information about its neigh-
bors, such as delay, and floods this information to all other nodes in the network. Once

a node has accumulated a full set of link-state packets, it can maintain a view of the



complete topology of the network. A shortest path algorithm is used to constuct routes

to destinations.

2.1.3 Distance-Vector Routing

In distance-vector routing [35], a node periodically monitors its distance to its neigh-
bors (e.g. in terms of delay) and instead of flooding the whole network broadcasts this
information only to its neighbors. Receiving nodes use this information to update their
routing tables, using a shortest path algorithm. A node performs triggered updates as
well as periodic updates when a change occurs in its routing table.

Compared to link-state routing, distance-vector routing provides each node an aggre-
gate view of the network, without causing too much overhead in the network. However,
distance-vector routing has a serious drawback, known in the literature as the “count-to-
infinity” problem. In particular, distance-vector routing takes a large number of update

messages to detect that a node is unreachable.

2.2 Proactive vs. Reactive Routing Protocols

Routing protocols for mobile ad hoc networks can be categorized into three classes:
Proactive, Reactive and Hybrid. Protocols differ based on how they handle Route Dis-
covery and Route Maintenance. Route discovery sets up initial routes or searches for
new routes when the old ones break. Route maintenance manages accurate information
about existing routes and also supports error recovery, which is initiated when a broken
route is detected.

In proactive protocols, routing information is exchanged among neighbors periodi-
cally or each time a change occurs in network topology. Essentially, proactive proto-

cols continuously perform route discovery and route maintenance by frequently updat-



ing reachability information. While protocols in this category have the advantage that
routes are immediately available when requested, they suffer from high control overhead.
Specifically, proactive protocols maintain routes regardless of the presence of traffic, thus
consume valuable resources such as bandwidth and power even if the network is idle.
Hybrid protocols aim to reduce the control overhead by balancing proactivity and
reactivity. However, all current protocols rely on proactively acquiring at least one-hop
neighborhood information. In comparison, on-demand routing protocols reduce routing
overhead by tying route discovery to network communication [33, 4]. Therefore the

remainder of this thesis focuses on on-demand routing.

2.3 Local Recovery in On-Demand Ad Hoc Routing
Protocols

On-demand protocols initiate a route discovery only when a new route is needed for
initial route set-up or due to a broken route. However, on-demand protocols rely on
flooding for route discovery, which causes high routing overhead and interference with
ongoing traffic. While there exists techniques for reducing the cost of the initial route
set-up, flooding may still be needed to find the destination. On the other hand, repairing
broken routes is a good target for optimization since any repaired route alleviates the
need for full route discovery from the source. However, it is important to ensure that any
route recovery technique costs less in terms of message overhead, delay and potentially
even power, than route set-up via flooding. Additionally, if the route repair selects a
broken route, the protocol will have to fall back on flooding and any benefits from route

recovery will be lost and the flow will experience extra delay.



Several protocols implement solutions to the flooding problem in on-demand rout-
ing by providing more efficient error recovery and route discovery mechanisms. These

protocols can be categorized into three main classes:

e Limited broadcast: Route discovery is initiated by intermediate nodes. The broad-

cast range is limited and does not flood the whole network [29, 36, 17].

e Multipath routing: Multiple routes are discovered and cached in a single route

discovery [19, 23, 26, 31, 18].

e Local error recovery mechanisms: Route errors are handled locally at an interme-

diate node instead of end-to-end error recovery at the sender [27, 3, 34].

Table 2.1 provides a taxonamy of local recovery protocols. The rest of the section

discusses protocols in these three classes in more detail.

2.3.1 Limited Broadcast Approaches

Protocols such as AODV [29] and ABR [36] provide route recovery by allowing inter-
mediate nodes to initiate a search to replace a failed route. In AODV, an intermediate
node attempts to repair a path if it is no further than “maximum repair” hops away
from the destination when a link break occurs. To repair the route, the node broadcasts
a route request message with a limited time-to-live. ABR (Associativity-Based Rout-
ing) employs a similar technique but provides route recovery with routes that tend to
be more long-lived by basing route decisions on a measure of next-hop mobility. We
believe both methods are too bandwidth consuming, since even with limited broadcast,
flooding scheme can deliver the “localized” query messages to a large number of nodes,
leading to high routing overhead. Other mechanisms that try to localize query flooding

to a limited region of the network also exist [17, 5]. However, these mechanisms either
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require location information (e.g., obtained using GPS) [17] or fine tuning of parameters

to determine the query region [5].

2.3.2 Multipath Routing Approaches

Multipath routing mechanisms [23, 19, 18, 26, 31] discover and cache multiple routes
with a single route discovery. When a broken route is detected, it is expected that other
routes will be available from the cache and a new route discovery due to a broken route
is only needed when all cached routes to a destination break.

Although multipath routing protocols reduce the number of route discovery attempts
in certain situations, they may suffer in the presence of mobility, incurring additional
packet drops and delay. This is mainly due to the fact that the multiple routes are
cached during the route discovery phase. If a significant amount of time has passed
between route discovery and route recovery, it is likely that the cached routes will be
invalid due to frequent topology changes. Without any mechanism to keep the caches
up-to-date, even if multiple routes are discovered, a route discovery attempt may be

inevitable.

2.3.3 Local Error Recovery Mechanisms

To enhance both regular and multipath routing protocols, local error recovery mech-
anisms can provide more robust route recovery during route failures in mobile environ-
ments. In AODV-BR [18], nodes snoop route reply messages to create alternate next
hops to the destination. When a node detects a broken route, it performs a one hop
broadcast to its immediate neighbors, which unicast the packet to their next hop if they
have an entry to the destination. However, the alternate routes may be stale since they

were only populated during route discovery. A similar methodology is used in WAR
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(Witness-Aided Routing) [3] that designates nodes in the neighborhood of an ongoing
communication as witness nodes, which buffer packets for the flow and deliver the packets
themselves to the next hop if a failure occurs. This requires witness nodes to maintain
state and dedicate storage for communication in which they are not involved. In both
AODV-BR and WAR, the same packet may be received by the destination several times
and cause unnecessary overhead.

NSR (Neighborhood-Aware Source Routing) [34] uses link-state information to en-
able relay nodes to repair broken routes. NSR maintains current two-hop neighborhood
information for all nodes via HELLO messages. While NSR can be considered a “partial
multipath” routing protocol since it proactively stores multiple routes to some nodes, the
HELLO messages are very expensive.

DSR can be considered an “implicit multipath” routing protocol due to the potential
of caching multiple routes. DSR also provides a route salvaging option that enables
intermediate nodes to recover from route failures locally by searching for alternate routes
in their caches. Although such salvaging may reduce packet drops due to route failures,
since nodes immediately send a route error back to the source, salvaging in DSR, does not
achieve any reduction in the frequency of route discoveries. A recently proposed protocol,
CHAMP [37], uses a distributed salvaging algorithm where all nodes temporarily cache
packets before forwarding. When a node receives a route error for a forwarded packet
and if the failed packet still exists in its “packet cache”, the node salvages the packet
with an alternate route from its route cache. Therefore, local recovery is achieved by
incurring additional storage overhead in relay nodes. Additionally, trying to recover
from the failure at all upstream nodes using stale route cache information may incur
extra delay when it is best to initiate a route discovery.

TORA [27] is an early routing algorithm that decouples network flooding from the

rate of topological changes and thereby localizes the reaction to route failures. However,
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Limited Multipath Routing Localized Error Correction
Broadcast
AODV Yes No No
ABR Yes No No
LAR Yes No No
AOMDV No Yes No
SMR No Yes No
AODV-BR | No Yes Yes. Neighbors forward
failed packets via an alter-
nate in their routing table.
NSR No Yes. Multiple partial paths | Yes. Link state information
are stored as link state in- | for 2-hop neighbors.
formation.
WAR No No Witness nodes
DSR No Yes/No. Multiple routes are | DSR route salvaging
implicitly stored in route
caches.
CHAMP No Yes Distributed route salvaging
TORA No Yes. Routed to destination | Yes. Link reversal mecha-
form DAGs, which provide | nism.
multiple route information.

Table 2.1 Classification of Route Maintenance Mechanisms in On-Demand Routing

Protocols

TORA uses a link-reversal algorithm that relies on synchronized clocks. Such synchro-

nization may be difficult to achieve among nodes in an ad hoc network and therefore

limits TORA’s applicability. Another drawback with TORA is the potential for insta-

bility when multiple nodes concurrently detect link failures and re-build routes based on

each other.

Although each of these local error recovery mechanisms has limitations, we believe

that localization of recovery is necessary for the scalability of ad hoc routing protocols. To

this end, we present by-pass route recovery, which achieves effective local route recovery

without using proactive HELLO messages.
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2.3.4 Route Repair with Local Recovery

Another important issue with local recovery, other than the actual mechanism to
repair a broken route, is to determine which actively used routes are affected by a link
failure and if they should be repaired along with the broken route. For routing protocols
that maintain routing information in intermediate nodes, it is challanging to determine
active routes (i.e., the routes in use) when routing information is not frequently updated.
While a proactive approach fixes all routes in routing tables regardless of whether they are
in use, a reactive approach only fixes the broken route and not possible soon-to-fail routes.
Therefore, a reactive approach may incur additional overhead by initiating multiple route
repairs for the same link failure, whereas a proactive approach may create unnecessary
overhead by repairing unused routes. In AODV, the repairing node may elect to repair
all routes that are affected by the broken link before a data packet is received or wait
until a data packet is received. In other words, the node can act proactively or reactively.
NSR and WAR are reactive and repair routes only when they fail. We believe there is a
need for a mechanism that provides a balance between proactivity and reactivity. SLR,
similar to DSR, identifies some actively used routes that should be repaired by checking
the interface queues for packets with routes that contain the broken link.

Although the main focus of this thesis is to provide local recovery only when link
failures occur, a second approach preemptively activates route repair when the signal
strength of a link goes below a certain threshold (i.e. route recovery is initiated before
the link actually breaks). Preemptive route recovery may enable a smooth handoff to a
new route for connections by switching to a new route before a link breaks. With this
method, it is possible to avoid packet loss if the link-breakage prediction algorithm allows
enough time to find an alternate route. We will implement the preemptive approach as

part of future work.
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Chapter 3

By-pass Route Recovery

The goal of any local recovery mechanism should be to repair broken routes in a way
that reduces control overhead and chooses valid routes. Therefore, a routing algorithm
with local route recovery should possess the following characteristics to enable efficient

route recovery for link or node failure.
e Repair with cached routes when available
e Repair with local route recovery when cached routes are not available
e Repair all active routes affected by broken links
e Utilize bandwidth efficiently

Utilization of both route caches and local route recovery mechanisms is essential for
providing robust recovery in ad hoc networks. The benefit of using route caches is two-
fold. First, when a link failure occurs, an alternate route may be immediately available.
Second, using route caches can provide reduction in the control overhead that is required
to repair a route. However, in high mobility environments route caches may contain
stale routes. Therefore, route recovery should not entirely rely on route caches and local
error recovery mechanisms should take over when route caches do not provide useful

information.
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Although the main concern of local recovery is to repair the broken route as fast as
possible, it is important to alleviate the effects of a broken link on future transmissions by
repairing all active routes that use the broken link. Finally, a local recovery mechanism
should use bandwidth efficiently by incurring minimum overhead.

By-pass route recovery follows these guidelines to achieve efficient and effective route
recovery. Although by-pass route recovery is not limited to any routing protocol, the
specifics of the mechanism depends on the characteristics of the underlying on-demand
routing protocol. In this section, we describe how by-pass routing can be integrated into
a source routing protocol.

When a node detects a broken route, it searches its route cache for an alternate route
to the destination. If a route exists, the node patches the broken route with the alternate
route. If the node is not able to repair the route from its route cache, it initiates by-pass
route recovery by querying its immediate neighbors to see if they have a link to any
of the nodes on the downstream route to the destination. As replies arrive, the node
patches the routes affected by the link failure with the received connectivity information.
When the patched packets reach the destination, the new route information is added to
an enhanced route error packet and sent back to the source to inform it about the broken
link and successful route change.

Local repair of broken routes may result in an increase in route lengths to destinations.
In by-pass routing, although the sources are informed of repair information, they are not
forced to use a longer route if they have a shorter route cached. Specifically, by-pass
route recovery aims to reduce the frequency of route discoveries, while allowing the node
to use shorter routes when possible.

An illustration of local route recovery using caches is shown in Figure 3.1. Initially,
the flow from Node S to Node D uses the route “S-J-K-L-M-N-P-R-D”. When the link

breaks between Node M and Node N, Node M detects the failure and attempts to patch
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Figure 3.1 Error recovery example

Node M: Cache state Node P: Query replies
M—-L—-Y—-N—-P—R—D P—X, P>X—=R

M—T—-U—-V—=D Patch process and new route

Patch process S—J—-K—-L—-+-M—-N—-P—-X—-R—D

S—J-K—-L—-M-—-L—-Y—-N—-P—-R—D

New Route: S»J—-K—-L—-M—-T—-U—-V—=D

a) Route patching with alternate cached route b) By-pass local recovery

Figure 3.2 Illustration of route recovery
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the route by using an alternate route from its cache to destination D (see Figure 3.2).
When Node M finds a route without loops, Node M salvages the packet with the “S-J-
K-L-M-T-U-V-D” route.

Figure 3.1 also illustrates an example of by-pass recovery. Again, Node S initially
uses the route “S-J-K-L-M-N-P-R-D”. When the link between Node P and Node R fails
and Node P does not have an alternate route in its cache to the destination, Node P
triggers a local query to its immediate neighbors. The neighbors reply if they have active
links to any of the downstream nodes on the broken route. In Figure 3.1, Node X reports
its connectivity with Node R to Node P. Node P patches the route accordingly and the
packet is first forwarded to Node X and then to Node R to reach the destination (see

Figure 3.2).
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Chapter 4

Source Routing with Local Recovery (SLR)
for Ad Hoc Networks

To evaluate the benefits of ”by-pass” recovery in a full protocol, we implemented a
prototype, Source Routing with Local Recovery (SLR) as an extension to DSR. Although
SLR uses DSR as the underlying protocol to demonstrate the feasibility and effectiveness
of local recovery with by-pass routing, SLR implements a different route selection and
maintenance scheme. The essential aspect that distinguishes SLR from DSR is error
handling. On a route failure, DSR reports the error to the original sender immediately,
even if it salvages the failing packet. This places the entire responsibility on the sender,
regardless of where the error occurs. SLR uses a three level error handling mechanism
(salvaging using route caches, local recovery, and error reporting) and informs the sender
of a need for route discovery only when salvaging and local recovery fails. Although
SLR makes use of source routes in packet headers, the ideas presented in this paper can
be applied to other routing protocols. For example, for AODV, the node detecting a
route failure can query neighbors if they have connectivity to either the other end of the
broken link or the destination. We plan to evaluate the effect of by-pass routing on other
protocols in the future.

In this section, we give a brief overview of relevant aspects of DSR and describe the

operation of SLR in detail.
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4.1 Overview of DSR Protocol

DSR is an on-demand routing protocol that only establishes routes to destinations
for active flows. When a node wants to find a route to another node, it broadcasts a
Route Request message to all its neighbors. Each node that receives a route request that
it has not seen before appends its own address to the source route in the packet and re-
broadcasts the packet. In this way, the route request is flooded throughout the network.
When a node that knows a route to the destination or the destination itself receives the
route request, a Route Reply is returned to the source.

In DSR, when a node detects a broken link to a neighbor, the corresponding route
entries are deleted from the routing table and the source nodes that are actively using
that link are informed of the link failure.

Several optimizations for route maintenance have been proposed by the authors of

DSR [1]. SLR utilizes all described optimizations, which are as follows:

e Route Salvaging: The node that detects a link failure may salvage the data packet
by replacing the source route in the header with an alternate route from its route
cache. The node also sends a route error packet to the original sender, identifying
the link over which the packet could not be forwarded. To prevent the possibility
of the infinite looping of a packet, a salvage count is used to limit the number of

times a packet can be salvaged.

e Increased Spreading of Route Error Messages: A source node receiving an error

packet propagates this error with the next route request packet.

e Automatic Route Shortening: When a node overhears a packet and it is not the
intended next-hop destination for the packet but exists later on the packet’s source

route, it sends the shorter route as a gratuitous route reply back to the source.
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e Snooping: Finally, a node can snoop data packets by operating in promiscuous
mode. Snooping is used to learn additional routes to each destination and to check

for route error messages.

4.2 Operation of SLR

SLR uses three mechanisms that work together to allow efficient recovery from route

failures:

e MAC Neighborhood Cache: This mechanism is responsible for determining the

state of links to neighboring nodes.

e Route Cache: Recently discovered routes are cached to avoid expensive route dis-

covery.
e Error Recovery:

— Route Salvaging: Any relay node can use an alternate route from its route

cache to salvage a route that contains a broken link.

— Local Error Recovery: Any relay node triggers by-pass route recovery if route
salvaging is not possible to fix the route failure. A broken route is repaired

utilizing link-state information collected from immediate neighbors.

4.2.1 MAC Neighborhood Caches

In SLR, the MAC neighborhood cache provides recent link and node status informa-
tion. A node may infer its active neighbor set from the information exchanged as a part

of link sensing and record this information in its MAC neighborhood cache. Each node
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maintains neighborhood information by caching a list of neighbors with a last-update
timestamp, indicating the time the node last heard from a particular neighbor.

To maintain the most recent neighborhood information, a node updates its MAC
neigborhood cache when a control or a data packet is received from any neighbor and if
a cache entry has not been updated within a given refresh interval. Cache invalidation
is a two stage process. If the refresh interval expires without any sign from a neighbor,
the neighbor’s link status is set to no communication. Once in no communication state,
if there is no communication from the corresponding neighbor during the delete interval,
the neighbor is deleted from the MAC neighborhood cache. On any activity, the link
status is marked as active (see Figure 4.1). The rationale behind this two-stage process
is that it provides a second chance for nodes that have not been in active communication
recently. The need for a two-stage process becomes clear when we discuss the utilization
of MAC neighborhood caches.

In SLR, link sensing is accomplished through passive inference. In other words, nodes
operate in promiscuous mode and eavesdrop on messages to update MAC neighborhood
caches accordingly. Another commonly used method for neighbor detection is a periodic
exchange of link state advertisements (e.g. HELLO messages). However, compared
to passive inference, HELLO messages are more energy and bandwidth consuming and
therefore not used in SLR.

To successfully populate the MAC neighborhood caches, some knowledge of the un-
derlying MAC protocol is useful. While SLR is not limited to any specific MAC protocol,
SLR was implemented based on IEEE 802.11 MAC [6], which uses RTS (Request-to-send)
and CTS (Clear-to-send) messages to provide a form of virtual carrier sensing and chan-
nel reservation to reduce the impact of the well-known hidden terminal problem. After

the RTS/CTS exchange, data packet transmission should be followed by an ACK. A node
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Neighbor 1 | Time 1 No Communication
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Timeoutl=Refresh Interval
Timeout2=Delete Interval

Figure 4.1 MAC Neighborhood cache and cache update process

listens for RT'S/CTS/DATA/ACK messages to infer a neighbor’s existence and updates
its MAC neighborhood cache.

While most neighbor information can be acquired by simply snooping packets, IEEE
802.11 has one behavior that requires additional state to determine the originator of a
packet. In IEEE 802.11, while RTS and DATA messages carry both sender and receiver
information, CTS and ACK messages only contain receiver information. When a node
overhears a CTS (ACK) message, the node checks if it is the destination and if it has
recently sent the corresponding RTS (DATA) message. However, without any additional
mechanism, a node that is not the sender of the RTS or DATA message cannot determine
the originator of CTS or ACK message simply by looking at the message. Due to this
problem, a node can cache only senders but not the receivers on a given route. To
utilize CTS and ACK messages, all nodes in SLR follow the same method as the actual
senders of RTS and DATA messages. Basically, a node that has overheard an RTS
(DATA) message records the identity of the receiver and the sender of this message.
When the node overhears the CTS (ACK) message, it checks if the recorded sender
information matches the receiver information of the CTS (ACK) message. If there is
a match, the receiver of the RTS (DATA) message is a neighbor and should be in the

MAC neighborhood cache. Using this method, MAC neighborhood caches represent the
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current neighborhood of a node more accurately (see Figure 4.2). However, there also
exists edge cases when a node cannot discover an actively communicating neighbor. This
situation occurs when a node is only able to snoop a CTS (ACK) message but not the
corresponding RTS (DATA) message. Figure 4.3 illustrates such a case. This case only
affects the optimization and not the correctness of MAC neighborhood caches. Also note
that, in Figure 4.3 although RTS and CTS messages are ordered in such a way that Node
C overhears one RTS message and then a CTS message using the proposed mechanism,

it does not mistakenly assume Node E is an active neighbor!.

R E @
SOOI OREORO

—® Path traversed by data
""" Linkslearned via snooping RTS/DATA
— =+ Linkslearned via snooping CTSYACK

Figure 4.2 Link-state information learned from RTS/CTS/DATA/ACK messages

In SLR, MAC neighborhood caches are used to enhance route selection. A node
searching for a route in its route cache checks if the next hop of the route exists in
its MAC neighborhood cache. More specifically, a node can identify a stale route if
the next hop is not in its neighborhood. Therefore, the delete interval of MAC caches
serves to determine the validity of routes in route caches. The reason for choosing the

delete interval as a timeout for route caches is to utilize routes even when link status is no

'Tt is assumed that the effective carrier-sense range of radios is at most 500m, so that the sequence
of RTS/CTS messages is possible to occur as shown in Figure 4.3.
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Figure 4.3 An example of when a node cannot discover an active neighbor

communication and thereby give a chance to route caches when there is no communication
in the network.

MAC neighborhood caches are also important during local recovery, where a node
queries its neighbors to see if they have connectivity to any of the downstream nodes
on the broken route to the destination. In this case, the status of the links should be
taken into account and only nodes that have active links to any of the nodes in the
query message should reply, since query replies must carry the most recent connectivity

information to facilitate efficient local recovery.

4.2.2 Route Caches

Route caching is an important part of any on-demand routing protocol. In on-demand
routing, a newly discovered route should be cached so that it may be reused the next time
it is requested. A cache hit with a valid route saves bandwidth and energy consumption by
eliminating the message overhead from route discovery and similarly reduces end-to-end
delay since the packet can be sent immediately without waiting to find a route. On the
other hand, route caching introduces the problem of effective strategies for managing the

structure and the contents of the cache since node mobility can change network topology
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and possibly invalidate cached routes. The use of an invalid cached route incurs additional
bandwidth, energy consumption and delay. Propagating data messages or route replies
with stale routes can also pollute other caches when intermediate nodes promiscuously
listen to all packets and cache route information. Therefore, careful design choices must
be made about the cache structure and cache timeout mechanisms. However determining
the optimal timeout interval for route caching is a complex problem and an active area
of research [20, 12, 21].

Since DSR is the underlying routing protocol for SLR, the rest of the section discusses
caching strategies proposed for DSR. In DSR, as mentioned before, routes are learned via
explicit route replies or, snooping data and route reply packets destined to other nodes.
Two alternatives, Path cache and Link cache(see Figure 4.4), have been proposed for
implementing route caches in DSR [12]. Path caches store each complete per-destination
route information. Link caches utilize the potential information from learned routes more
efficiently by creating a unified graph from all links in all routes. Although path caches
are simple to implement and easily guarantee loop-free routes, link caches provide nodes
a more detailed view of the current network topology. Link caches with an adaptive
timeout mechanism (i.e., a link’s timeout is chosen according to its stability) have been
shown to be more accurate than other types of link caches and path caches [16, 21, 12].
However, generally link caches require more complex route search algorithms (such as
Dijktra’s shortest path algorithm) compared to linear search algorithms. On the other
hand, the performance evaluations in [21, 12] of route expiry mechanisms are only based
on link caches (i.e. none of the path caches employ a timeout mechanism). Motivated by
[24], we believe that path caches will also benefit from a timer-based expiry approach so
that stale routes are not used in response to route queries or to salvage broken routes.

It must be also noted that there might be cases when stale routes exist in route caches

even if a timeout mechanism is employed. For example, in [24], Marina and Das point
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out that there is no way to determine the freshness of routes in DSR when intermediate
nodes promiscuously listen to all packets and cache route information. Even if a route
error message erases invalid caches, an “in-flight” data packet that carries the same stale
route would put the route back in caches. Epoch numbers [14] are proposed to prevent
the re-learning of a stale link after having heard the link has broken. However SLR does
not employ such a numbering mechanism, since one of the main goals of SLR is to reduce
the reliance on route caches. SLR utilizes a local recovery strategy when caches contain
obselete information, which enables more effective information correction in route caches
as well as error recovery. For this reason, the implementation of SLR uses a simple path
cache known as Path-Gen-34 [12] instead of more complex data structures such as link
caches. We will investigate the effect of link caches on local recovery as a part of our
future work.

Path-Gen-34 is composed of two separate caches: a primary cache and a secondary
cache. Routes learned as a result of route discoveries are inserted into the primary cache.
Routes learned opportunistically (e.g., by snooping) are inserted into the secondary cache.
On a route search, both primary and secondary caches are searched for the shortest path.
When there is a cache hit in the secondary cache (i.e., the shortest path exists in the
secondary cache), the route is promoted to the primary cache. Each cache runs an
independent replacement strategy based on a round-robin scheme. The division of the
cache into primary and secondary caches prevents opportunistic routes from competing
for cache space with routes of known value to the node.

The original Path-Gen-34 does not employ a timeout mechanism, so routes in the
caches are not guaranteed to be fresh. However, SLR uses MAC neighborhood infor-
mation to determine the validity of routes. Basically, a source selects a route from its

route cache as the source route of the flow if and only if the next hop exists in its MAC
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neighborhood cache. With this method, even if stale route information enters the route

caches, it is not utilized unless the next hop is in the neighborhood of the source.
()9

/
(o kS

(9
(a) Example ad hoc network
S
OROmOnC @?

O OO 0
@H@H@%@

) Path cache (c) Link cache
Figure 4.4 Path Cache and Link Cache Data Structures for a Node S

Figure 4.4 illustrates an ad hoc network, where the link cache and the path cache is
formed after Node S discovered the following routes: “S-A-B-C”, “S-A-B-F-C”, “S-D-E-
G”. A problem that occurs with the use of timeout mechanisms in caches is the potential
loss of useful information, which occurs when invalidating unused routes. In Figure 4.4,
Node S chooses the shorter path “S-A-B-C” between two possible routes to Node C.
Since the route “S-A-B-F-C” is never used, the links B-F and F-C will expire from the

link caches of the source and intermediate nodes. After the expiration of these links, if
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the link between Nodes B and C fails, the link cache cannot provide an alternate route
and a route discovery is necessary. However with by-pass routing, Node F overhears data
from source Node S to destination Node C, and so caches Node B and Node C as its
neighbors. Therefore, Node B can discover an alternate path to Node C by doing a local

query to its neighbors.

4.2.3 Route Recovery

Send,Receive, Forward .
Salvage with alternate route

Link Break

No route in cache
or
Salvage route failed

Timeout
If no route found
Send error to source

Check for packets with broken link Patch routes with Query replies
Patch if possible, else send error to source

Figure 4.5 Protocol State Diagram

In SLR, error recovery is a three stage process (see Figure 4.2.3). When a node detects
a broken route, it first tries to recover from the failure by salvaging the packet using its
route cache. This attempt is recorded in a “fail-record table” as <source, dest, route,
method=salvaging>. When salvaging fails or is not possible, the node buffers the packet
and all packets that are affected by the broken link in its interface queue in a “fail-packet
buffer”. The next step is to query neighbors for connectivity information to downstream
nodes on the broken routes. As query replies arrive, the node patches the broken routes
and sends packets out using the new routes.

The rest of this section describes route salvaging and local recovery in detail.

29



4.2.3.1 Route Salvaging

While DSR uses route salvaging as an optimization for route maintenance, a node still
sends an error message back to the source to indicate the broken link. The motivation
for route salvaging in DSR is to provide the necessary time for a source to complete a
new route discovery, while reducing the number of packets dropped due to link failures.
However, salvaging is a temporary solution and the source is expected to find a new
route.

In DSR, a node salvages a packet by simply replacing the source route with an alter-
nate route from its cache, and thereby loses the first (successful) part of the source route.
The main goal of SLR is to provide the source with a stable route as well as to inform
the source of the route failure due to the broken link. To provide such information, a
node searches complete loop-free routes to the destination to salvage a packet, preserving
the first part of the route (i.e., from the source to the node dectecting the route failure).
More specifically, in SLR, the node detecting the route failure looks for an alternate route
in its cache to patch the broken route (see Figure 3.2).

In SLR, a packet can be salvaged only once. This is important to reduce the use of
route caches for route recovery. Failure of the salvaged route serves as a warning for the
node detecting the failure to perform local recovery instead of relying on its route cache.

If the salvaged packet arrives at its destination, the destination in turn sends back an
enhanced route error message to the source to indicate the salvaged route as an alternate
to the broken route. When forwarding this information, the repairing node snoops on
the packet to update the fail-record with the repair information.

If new packets that use the broken link in their source routes arrive at the node that
detected the route failure, the repairing node continues salvaging packets with alternate

routes. On the other hand, if no repair information is available (i.e., no acknowlegment is
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Fail-Buffer Check
For each packet p in fail-buffer
IF salvage == enabled and !p.salvaged
IF Patch(p.route, salvage route)
Send(p, salvage route)
ELSE
p.route = salvage route or Drop(p)
SendRateLimited(ERROR, p.source)
ELSE

Drop(p)
SendRateLimited(ERROR, p.source)

Figure 4.6 Fail-Buffer Check Algorithm

received from the destination) the node should prevent packets from using the failed link
and send back error messages to sources trying to use the recently broken link. In this
case, the node has two options about the fate of the packet: either replace the packet’s
source route with an alternate route in its route cache, if it exists, as DSR salvaging does,
or drop the packet. SLR uses the first option, which is more aggressive, to give one last
chance to the packet (see Figure 4.6). Specifically, before forwarding a packet, a node
checks its fail-record table for recent failures and salvages accordingly. If the source does
not switch to a salvaged route, the repairing node should send error messages back to

the source in a rate-limited fashion until the fail-record expires (see Figure 4.7).

4.2.3.2 Local Recovery

A node performs local error recovery under the following conditions:

e The node does not have an alternate path to perform salvaging,

e the packet has already been salvaged,
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Forward(Packet p)
/* FailTable update */
IF p == ERROR-enhanced
IF FailTable.contains(“p.dest-p.src”)
patch = GetPatch(p.newRoute, p.BadLink)
FailTable.updateTable(patch, p.BadLink)
/* Avoiding route failures */
IF FailTable.contains(node, p.nextHop)
IF FailTable.existPatch(“node-p.nextHop”)
IF Patch(p.route, patch)
Forward(p)
ELSE
Put(FailBuffer, p)
ELSE
Put(FailBuffer, p)

Figure 4.7 Changes to Packet Forwarding

Recv(Packet p)

IF p.salvaged or p.patched
DeadLink(p.BadLink.from, p.BadLink.to)
ERROR-Enhanced =p.route + p.BadLink
SendRateLimited(ERROR-Enhanced, p.src)

Figure 4.8 Changes to Packet Reception
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e salvaging is disabled.

When one of the above conditions is satisfied, the node detecting the route failure
sends a one-hop broadcast message to its neighbors, querying if they are neighbors with
any of the nodes in the failed route. The local recovery is recorded in the “fail-record”
table as <source,dest, route, method=by-pass routing>.

The one-hop broadcast packet includes aggregate information of all the active failed
routes affected by the link failure. More specifically, on a link failure, a node searches its
interface queue for packets that carry a source route that contains the broken link. The
failing packet and all packets in the interface queue that need to use the broken link are
stored in a “fail-packet buffer”. A list of all nodes existing on such soon-to-fail routes is
sent with the query message. This is done to find alternate paths for all effected active
connections. Thus, with by-pass route recovery, a reply message can fix multiple active
routes.

The nodes that receive the local query message search their MAC-neighborhood
caches for a neighbor listed in the query message. The node includes all such neighbors
in its reply message (see Figure 4.9). To avoid query reply storms, nodes use a random
backoff algorithm and send a query reply only if they have not overheard another node’s
reply to the same query.

When the querying node receives a reply, it checks its “fail-packet buffer” for failed
packets and repairs as many broken routes as possible with new link-state information.
For flows that have switched to a new route, one packet is marked as “patched” to warn
the destination of the broken link and the route change (see Figure 4.10). The node also
updates its route cache with the new connectivity information.

When patched packets arrive at their destinations, enhanced route error messages

are sent to the source that carry both the broken link and the repair information. The
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LocalQuery-Recv(Query Q)
FOR i = 0 to length(Q)
IF Q[i] == id or
MACNeighborhoodCache.contains(Q][i])
QueryReply += Q[i]
reply Count++
Put(QueryReplyBuffer, QueryReply)
BackoffSend (QueryReply)

Figure 4.9 Replying to local queries

QueryReply-Recv(Qreply)
FOR each node i in Qreply
patch[i] = id + sender(Qreply) + node[]
FOR each packet p in FailBuffer
IF Patch(p.route, patch[i])
mark*(p, patched)
Send(p, p.newRoute)
UpdateRouteCache(patch[i])

* p is marked, if a marked packet has not been sent for
the same flow recently

Figure 4.10 Processing query replies

fail-record entries corresponding to the repaired routes are updated with the repair in-
formation. The records for repaired routes are not deleted from the fail-record table
until they expire. The repairing node uses these entries to identify if the source node
switched to the new route successfully. If a repairing node does not receive any query re-
ply messages or enhanced route error messages indicating the repaired routes are indeed
an alternate to the failing routes before a timeout occurs, a route error message is sent

back to the source (see Figure 4.6).
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Chapter 5

Simulation Study

The effectiveness of local recovery via by-pass routing can be evaluated by its impact

on the following properties:

e Packet delivery ratio: The ratio of data packets delivered to the destinations to
those generated by the sources. Packet delivery ratio is important since it quanti-
fies packet loss rate and characterizes the maximum throughput the network can

support.

e Average end-to-end delay: The difference between the time a packet was sent by the
sender and the time it was received at the destination, including all possible delays
due to buffering during route discovery, queueing delays, retransmission delays at

the MAC layer, propagation times and delays incurred by local route recovery.

e Goodput: The overhead per byte, capturing the effect of routing overhead and of
route length. Goodput is calculated as the ratio of the number of data bytes received
to the overhead of local query messages and enhanced route error messages, DSR
control overhead of route requests, route replies and route errors and the overhead

of forwarding data along each hop.

e Routing overhead: The ratio of local recovery and DSR control overhead to the

amount of data received at the destinations in bytes. Different than goodput,

35



routing overhead does not include the effect of hop count (i.e., the byte overhead
of forwarded data messages is omitted). Each transmission of a packet counts as

one transmission. This metric determines the scalability of the protocol.

e Average hop count: The average number of hops a data packet traverses to reach

its destination.

5.1 Simulation Environment

To evaluate the performance improvements of by-pass routing, we compare SLR with

DSR. We compare the following schemes:
e DSR (cache): Dynamic source routing.

e DSR (nocache): DSR without intermediate nodes replying to route requests from

route caches. Salvaging is also disabled.
e SLR (cache): Source routing with local recovery.

e SLR (nocache): SLR without salvaging and propagation of route replies from route

caches.

We implemented SLR in the ns-2 [2] network simulator using the CMU [1] wireless
extension. Our simulation results represent an average of five runs with identical traffic
models, but different randomly generated network topologies. We use the random way-
point [4] mobility model, with a speed uniformly distributed between 0-20 m/sec. We
will study the performance of SLR with different mobility models as a future work, since
the random waypoint model has been shown to have limitations [38]. Table 5.1 lists the

SLR parameters.
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Table 5.1 Parameters used in SLR simulation

Fail-record: Table size (number of entries) 34
Fail-record: Timeout (s) 1.0
Fail-buffer: Packet timeout (s) 0.02
MAC Neighborhood: Refresh interval (s) 0.05
MAC Neighborhood: Cache timer (s) 3.0

5.2 Impact of Traffic Load

To evaluate the impact of traffic load, we simulate SLR in 1500mx500m network
with 60 nodes with long-lived CBR connections at different transmission rates between
0.2Kb/s-2.2Kb/s. All data packets are 128 Bytes. There are 20 connections started
randomly between 20s and 25s. Each simulation runs for 600s. A pause time of 60s was
used to achieve moderate mobility in the network.

We compare packet delivery ratio, goodput, routing overhead and delay of DSR and
SLR with and without the benefit of route caches. Figure 5.1(a) shows the packet de-
livery ratio as the traffic load changes. Both SLR (cache) and SLR (nocache) achieve
high packet delivery ratios compared to DSR (cache) and DSR (nocache). SLR (cache)
shows the best performance by increasing the delivery ratio between 3-19%. With SLR
(nocache), the increase in delivery ratio is lower in low traffic loads. As the network load,
and so amount of communication, increases, the nodes provide more robust recovery
with more frequently updated MAC neighborhood caches. We see from Figure 5.1(a),
the packet delivery ratio of DSR(cache) is lower than DSR (nocache) and SLR. This
indicates that SLR uses route caches more effectively than DSR by tying route validity
to up-to-date MAC neighborhood information.

Figure 5.1(b) shows that in terms of goodput, SLR performs very close to DSR. The
main reason for comparable performance is due to forwarding more data messages over

longer routes in SLR (see Table 5.2). On the other hand, Figure 5.2(a) shows that SLR
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Figure 5.1 Delivery Ratio and goodput vs. traffic load, 20 CBR connections, 60 nodes,
1500mx500m region, speed 0-20m/s

Table 5.2 Average Hop count with different traffic load

SLR(cache) DSR(cache) SLR(nocache) | DSR(nocache)
Hops 3.427 3.144 3.324 3.160

incurs around the same amount of routing overhead as DSR, by replacing route request,
route reply and DSR error messages with local query and enhanced route error messages.
Therefore, SLR performs significantly better in terms of throughput, by incurring local
route recovery overhead that facilitates efficient communication. Another observation is
that although SLR uses longer routes, it does not incur significantly higher delays and
delivers most of the packets in less than 0.01 seconds. This conforms to our discussion in

previous sections that SLR reduces the delays due to route discovery (see Figure 5.2(b)).

5.3 Impact of Mobility

We evaluate the impact of mobility in a 1500mx500m network with 60 nodes and 20

CBR connections with transmission rates of 4Kb/s. The data packet size is chosen as
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Figure 5.2 Routing overhead and delay vs. traffic load, 20 CBR connections, 60 nodes,
1500mx500m region, speed 0-20m/s
256Bytes. We change mobility rate by setting different values of pause times as 0, 30,
60, 120, 300 and 600 simulation seconds.

As shown in Figure 5.3(a), the packet delivery ratio of SLR (cache) and SLR (nocache)
are higher than both types of DSR. While the performance improvement is significantly
higher in high mobility, DSR catches up with SLR in low mobility scenarios as the number
of broken routes decrease. We see the same effects of routing overhead and hop count
on goodput, which indicates that SLR, by localizing the reaction to topological changes,
improves the throughput with acceptable overhead. Specifically, Figure 5.4(a) shows that
SLR outperforms DSR in terms of overhead. These results match the results shown in
Figure 5.2(a) when the traffic load increases in the network, but are plotted in a different
scale. The difference in hop count between SLR and DSR shows that SLR does not

achieve better goodput due to using longer routes.
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Chapter 6

Conclusions

On-demand routing protocols are attractive for mobile ad hoc networks. However,
their effectiveness is limited by the use of flooding to discover new routes. In this paper,
we propose by-pass route recovery that reduces the need to perform route discovery for
broken routes. Our primary concern is to provide robustness to route failures.

We implemented a prototype of by-pass route recovery based on source routing. Sim-
ulations show that SLR (Source Routing with Local Recovery) achieves significantly
higher throughput while maintaining acceptable overhead. The results verify that local
recovery is the right approach for route recovery in ad hoc networks. We are currently
working on performance evaluations on larger networks. Our initial results show that
by-pass routing enables efficient communication by localizing the reaction to topology
changes and so provides scalable route recovery.

Our future plan is to investigate the benefits of by-pass routing with other on-demand
protocols. We also plan to evaluate the effectiveness our approach by comparing its per-
formance with hybrid and local recovery protocols. Additionally, we will look into other
issues related to local recovery such as utilizing link caches in SLR’s implementation and
further evaluate our scheme with more realistic mobility models. Our future research goal
is to study by-pass routing in power-saving ad hoc networks. We believe the advantages
gained through by-pass routing due to its localized behavior will enable better power

management.
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