
1

Designing a Rate-based Transport Protocol
for Wired-Wireless Networks

Shravan Gaonkar1, Romit Roy Choudhury2, Luiz Magalhaes3, and Robin Kravets4

Computer Science, Electrical and Computer Engineering, Engenharia de Telecomunicaes,
University of Illinois, Duke University, Universidade Federal Fluminense,
Urbana Champaign, IL Durham, NC Brazil
{gaonkar1, rhk4}@uiuc.edu romit@ee.duke.edu2 schara@midiacom.uff.br3

Abstract—A large majority of the Internet traffic relies on
TCP as its transport protocol. In future, as the edge of the
Internet continues to extend over the wireless medium, TCP (or
its close variants) may not prove to be appropriate. The key
reason is in TCP’s inability to discriminate congestion losses
from transmission losses. Since transmission losses are frequent
in wireless networks, the penalty from loss misclassification can
become high, leading to performance degradation.

This paper presents an eXtended Rate-based Transport
Protocol (XRTP), designed to support communication over lossy
wireless media. We depart from the ack-based rate control
paradigm. Instead, we try to estimate the network conditions by
injecting probe packets at the sender, and then observing the
spacing between packets that arrive at the receiver. We show
that these observations can be useful indicators of available
bandwidth, network congestion, and even the cause of packet
loss. The inferences from the observations are utilized to
regulate the transmission rate at the sender, leading to desirable
properties of congestion control and loss discrimination.
Simulation results show the efficacy of our proposed rate-based
protocol in lossy wireless environments.

I. I NTRODUCTION

Advances in communication technology have increased the
reliability of wired links to the point where transmission losses
are rare. Building on these advancements, TCP has been tuned
to assume that all losses are caused solely by congestion.
With the internet rapidly extending over the wireless medium,
this assumption does not hold for combined wired-wireless
networks (such as wireless LANs). In these hybrid networks,
packets are lost due to transmission errors over wireless links,
as well as due to congestion within the wired infrastructure.
This necessitates a transport protocol that can respond
appropriately to the type of loss, while retaining important
TCP-like properties such as congestion control and fairness.
Choosing an appropriate response is non-trivial because
the transport layer has no explicit knowledge about the
cause of packet loss. Furthermore, the appropriate responses
are in conflict with each other, hence, an incorrect response
can incur substantial performance penalties, as discussednext.

Consider a case in which the transport layer is required

to react to a packet loss. If the loss is due to congestion, the
transport protocol should react in a fashion that alleviates
congestion in the network. However, if the loss is due to
transmission (hence not indicative of congestion), the transport
protocol can perhaps ignore the loss, and continue with its
operations. Now, if a congestion loss is incorrectly classified
as a transmission loss, the sender will not decrease its offered
load and more congestion will build up in the network.
Conversely, if transmission loss is treated as a congestion
loss, the sender will unnecessarily reduce its offered load,
reducing the throughput of the stream. When several losses
occur over time, the impact of such misclassification can be
significant.

Several proposals have aimed to perform loss discrimination.
However, many of the them either require changes inside
the network infrastructure, or deviate from the end-to-end
semantics. This paper explores the possibility of a rate-based
protocol (XRTP) that conforms to the desired characteristics
of a transport protocol, while addressing the specific issues
in wired-wireless environments. Our main idea in XRTP can
be briefly described as follows.

An XRTP sender sends streams of data packets using a
suitably chosen rate1. Periodically interspersed with these
data packets, the sender also sends back-to-back packet-pairs.
Using well-known statistical techniques [1], the separation
between received packet-pairs are used to estimate the
available bandwidth in the network. This estimate is in turn
used to regulate the transmission rate in small increments,
resulting in a smooth stream of packets. Now, XRTP takes
advantage of this smoothness to facilitate loss discrimination.
Specifically, we show thatcongestion and transmission losses
typically produce distinguishable anomalies on the timings at
which packets are received.By observing these anomalies,
loss discrimination can be achieved with reasonable accuracy.
While some false alarms are possible, we utilize additional
mechanisms to reduce its probability. Simulation results show

1This is in contrast to the ACK-based transmission in TCP, which can often
be bursty in nature.

2

that XRTP is capable of improving network utilization, while
maintaining congestion control and fairness in combined
wired-wireless environments.

The remainder of this paper is organized as follows.
Section II discusses related work in the area of transport
protocols for combined wired and wireless networks. In
Section III we describe the architecture of XRTP, and include
detailed discussions on its three major components – (i)
bandwidth estimation, (ii) rate and congestion control, and
(iii) loss discrimination. We evaluate XRTP in Section IV,
and discuss some issues in Section V. We conclude the paper
with a brief summary in Section VI.

II. RELATED WORK

There have been several proposals to optimize TCP for
wireless networks [2]–[9]. Some of these solutions [2], [3]
try to maintain the semantics of TCP congestion control by
hiding transmission losses from the end hosts by modifying
the underlying infrastructure. Techniques like Explicit Loss
Notification (ELN) [10] and Explicit Congestion Notification
(ECN) [11] can be integrated into an end-to-end approach
to provide almost perfect knowledge of the cause of a loss.
However, such an approach requires wide-scale updation of
routers and other support infrastructure, making deployment
difficult. An end-to-end approach is necessary that does not
rely on additional support from the underlying wired-wireless
network.

Recently, rate-based protocols such as RAP [12] and
TFRC [13] have become popular due to their smoother
transmission rates in comparison to ack-based protocols2.
While effective for wired networks, the existing rate-based
protocols are not directly applicable to wireless networks
because of dynamically changing data rates. Another proposal,
named Wireless-TCP [14], strives to cope with the changing
bandwidth by observing the ratio of inter-packet separation
at the receiver to inter-packet separation at the sender. By
exploiting long-term jitter, WTCP carefully tries to achieve
the available bandwidth. However, long-term jitter is not the
most accurate metric since channel conditions in wireless
networks change too rapidly. In one component of XRTP,
we partially adopt the approach used by WTCP by using
observations about short-term jitter to monitor congestion
in the network. When congestion is detected, an XRTP
transmitter is instructed to reduce its transmission rate.The
new transmission rate is guided by the available bandwidth
in the network.

XRTP uses back-to-back packet-pairs (also called probes)
to estimate available bandwidth. Techniques like packet-
pair have been widely used by off-line tools that measure
bandwidth (e.g. tcpanaly [15], bprobe [16]). However,
measurements from packet-pair often include erroneous

2Ack-based protocols are based on self-clocked behavior, and have domi-
nated the Internet for their ease of implementation.

values and the data filtering techniques used by these
tools lack statistical robustness. Lai et. al. [17] suggestthe
use of kernel density estimation (KDE) to filter data for
estimating the bandwidth of all the hops from the source to
the destination. XRTP uses an optimized KDE algorithm that
provides efficient filtering without loss of accuracy, using
the technique of finite differencing. Sundaresan et.al. [18]
approach the problem of a reliable transport protocol for
ad-hoc networks using packet probes and support from the
intermediate nodes to estimate available bandwidth. TCP
friendliness was not a constraint for their ATP (ad-hoc
transport protocol) protocol, since ATP was targeted for ad-
hoc nodes which implement a dedicated protocol stack. XRTP,
on the otherhand, does not expect any network support and
it is expected to exhibit fairness to both XRTP and TCP flows.

A number of protocols have been proposed that enhance
TCP to achieve loss discrimination. Biaz et. al. [19]
distinguish between congestion and wireless loss using packet
inter-arrival times at the receiver. Barman et. al. [20] assume
that the variation in the round trip time and the nature of the
loss are correlated. Essentially, congestion losses causethe
RTT to vary over the standard deviation but random losses
do not. Samaraweera [21] correlates the round trip time with
the throughput-load graph of the flow. Although interesting,
the problem with these approaches is that their heuristics are
proposed for TCP-like ack-based protocols that are bursty
in nature. However, these heuristics are better suited for
rate-based protocols [22], providing better correlation of
actual network conditions with parameters like round-trip
time (RTT), RTT-variance, or the throughput-load graph of
the flow. These possibilities with rate-based approaches partly
motivate the design of XRTP.

III. EXTENDED RATE-BASED TRANSPORTPROTOCOL

Traditional transport protocols, designed for wired net-
works, do not incorporate appropriate recovery mechanisms
for transmission losses. While designing solutions for wired-
wireless environments, an intuitive approach may be to extend
the traditional protocols with a loss discrimination module.
We argue that this is not sufficient because the protocol’s flow
and congestion control mechanisms are synergistically related
to loss discrimination. Modifications to any one component
will need synergistic modifications to the others. In view of
this, the proposed XRTP framework is centered around three
main components, namely (i) flow control, (ii) bandwidth
estimation, and (iii) loss discrimination. We begin this section
by describing the basic structure of XRTP to offer a high level
intuition. Subsequently, in subsections III B, C, and D, we
present the details of each of the components.

A. Protocol Structure

XRTP is a protocol that regulates the transmission rate
of the sender based on available bandwidth and network
congestion. To estimate available bandwidth, XRTP sources

3

periodically send back-to-back probe packets interspersed
with its regular rate of data packets. The XRTP receiver
observes the spacing between the probes, as well as the
spacing between data packets, to derive the available
bandwidth in the network. The spacing between packets, also
called jitter, can be an indicator of network health. In the
event of increasing jitter – an indication of growing network
congestion – XRTP reduces the transmission rate proactively.
Since the reduction is proactive, it can be small, which in turn
makes the transmission rates smooth. This also helps loss
discrimination – congestion and transmission losses introduce
distinct irregularities in the smoothness, making it possible to
tell them apart. When the results of this discrimination is fed
into the congestion control mechanism, XRTP’s transmission
rate copes better with the dynamic network conditions. The
penalty from incorrect loss discrimination reduces, whichin
turn reduces the burstiness in traffic. The benefits can be
substantial in infrastructure-based wireless networks, such as
WLANs.

The applicability of back-to-back packet probes (for esti-
mating bottleneck bandwidth) is not our contribution. It had
been proposed in literature (e.g.tcpanaly[15], bprobe[16]).
Since measurements from such probes often include erroneous
values (primarily due to cross-traffic), statistical techniques
have also been proposed for data filtering. Lai et. al. [17]
suggest the use of kernel density estimation (KDE) to filter
data for estimating the bandwidth of all the hops from the
source to the destination. The computational complexity of
incorporating Lai’s technique in an actual network can be
high. In view of this, we optimize the KDE algorithm to
enable online execution, with marginal loss of accuracy in
the estimation process. The details of the optimized KDE
algorithm are presented later in this section. We first describe
the three main components of XRTP.

B. Bandwidth Estimation

XRTP aims to estimate theavailable bandwidthin the
network, and regulate its transmission rate based on this
availability. However, the available bandwidth is a dynamic
value, and changes constantly with varying traffic patternsin
the network. As shown by Keshav [23], measuring available
bandwidth is a difficult task in FCFS routers, and packet-pair
techniques do not work. This is because packet pairs (i.e.,
back-to-back probes) measure thebottleneck bandwidth,
defined as themaximum throughput that can be obtained
between two hosts in the absence of any cross traffic. Now,
using bottleneck bandwidth measurements (from packet-
pairs), and combining it with short-term history of jitter (from
regular data packets), XRTP determines the trend in network
congestion, and in turn prescribes how the transmission rate
should be regulated.One may view this as an indirect way
of estimating available bandwidth.However, unless handled
carefully, specific cases can inject error into the estimation.
We discuss these cases in detail and apply statistical methods
to address the potential causes of inaccuracy. We begin with

t s − t s
1 0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 1 0
t r − t r

FLOW MODEL OF PACKET PAIR

Bottleneck Bandwidth = Bbn

Fig. 1. Fluid model of packet pair with two packets. The separation between
packets is ideally dictated by the bottleneck link.

a closer look into the packet-pair technique.

1) Packet Pair: The fluid flow model in Figure 1 depicts
two packets of the same size traveling from a source to a des-
tination. The narrow part represents the bottleneck link. Once
the packet-pair leaves the bottleneck link, a gap is inserted
between the two packets due to different transmission times
of the bottleneck link and the subsequent (high-bandwidth)
link. Let Bbn be the bottleneck bandwidth,S be the size of
the packet,ts0 and ts1 be the times when the first and second
packets are sent back-to-back from the sender, andtr0 and tr1
be the times when the first and second packets are received
at the final receiver. To maintain conservation of flow, the
equilibrium equation for the described model is given by

tr1 − tr0 = max

(

S

Bbn

, ts1 − ts0

)

. (1)

The equation reveals that if the two packets are sent close
enough in time forcing them to queue at the bottleneck link
back-to-back, the packets will arrive at the receiver with a
spacing,tr1 − tr0, same as that introduced by the bottleneck
link’s bandwidth, S

Bbn

. Rearranging Equation (1), the bottle-
neck bandwidth can now be computed as

Bbn =
S

tr1 − tr0
. (2)

However, Equation (2) only holds provided that the two
packets are queued only at the bottleneck link and at no
later link downstream. This assumption is difficult to satisfy
since packets travel through multiple hops and each hop
carries multiple flows. Due to this dynamic nature of the
network, packets from other flows can get inserted between
the packet pairs, increasing the gap between the packets
and causing an underestimation of the bottleneck bandwidth
(time-expansion). The packet-pair may also get queued
at a later router decreasing the gap between packets, and
causing an overestimation of bottleneck bandwidth (time-
compression). To enable the use of packet-pair for bottleneck
bandwidth estimation, a statistically robust filtering algorithm

4

is necessary to eliminate anomalies like time-compression
and time-expansion. XRTP uses a kernel density estimation
(KDE) algorithm [24] specifically optimized for the rate-based
protocol.

2) Kernel Density Estimation: Probability density func-
tions are the basis for estimation of any random quantity.
Consider the set of observed data points of an unknown proba-
bility density function. To avoid making assumptions aboutthe
distribution of the observed data, a non-parametric approach
such as KDE [24] can be used to filter the observations. The
best estimate of the observed data would be the mean of this
random variable.

The probability density function for a kernel estimator with
kernel K is defined by

f(x) =
1

nh(x)

n
∑

i=1

K

(

x − Xi

h(x)

)

. (3)

Here, h(x) is the variable window width, also called the
smoothing parameter or bandwidth, n is the number of obser-
vations collected and K is the kernel function that satisfiesthe
following condition:

∫

∞

−∞

K(x)dx = 1.

The time complexity of the KDE algorithm is of order
O(n2), where n is the number of consecutive jitter sam-
ples stored in the XRTP cache to make an estimation. Lai
et. al. [17] used this estimation technique offline for measuring
bottleneck bandwidth in their toolpathchar. However, for
XRTP, the KDE algorithm needs to execute online, and should
ideally have a low running time. This motivates optimizing
the KDE algorithm. Looking at the estimator function as
described in Equation (3), for a fixed widthh, a standard finite
differencing technique can be used to reduce the algorithm
to linear time (see Figure 2). Specifically, each time a new
observation or measurement is added into the estimator, the
density of the observation being removed (oldest observed
measurement) can be subtracted from all observations and the
density of the new observation can be added to all observations
in linear time. In an adaptive estimation algorithm whereh

varies, there is a possibility of the introduction of an error
term into the estimation in the linearized KDE algorithm due
to finite differencing. However, this error is not cumulative
and is orders of magnitude smaller than the bandwidth esti-
mates, making the error negligible and limiting the impact
on the accuracy of estimation. Therefore, XRTP uses this
linearized KDE algorithm to filter out irrelevant observations
(i.e., effects of time-compression and time-expansion) and
accurately estimates bottleneck bandwidth. The pseudo code
for the algorithm is presented in Figure 2.

C. Rate and Congestion Control

XRTP sends packet-pairs once every four data packets
to estimate bottleneck bandwidth. Each time the receiver
estimates the new bandwidth, it uses a weighted average of

array obsrv[n] // last n observations
array pdf[n] // density estimations
est // current estimate
functionbandwidthestimation(new)

// subtract the density of the oldest observation
for i = 2 to n

pdf [i] − =
K(

est−obsrv[i]
h

)

n.h

next i
// delete the oldest observation along
// with addition of new density estimate
for i = 1 to n-1

pdf [i] = pdf [i + 1] +
K(est−new

h
)

n.h

obsrv[i] = obsrv[i+1]
next i
// compute the density of new observation
obsrv[n] = new

pdf[n] = 1
nh

∑n

i=1 K
(

est−obsrv[i]
h

)

// compute new width h and estimate i.e., mean
// return new estimate

end function

Fig. 2. Linear kernel density estimation for BW filtering.

the current rate and the new estimated bandwidth to update
the rate of the protocol. XRTP updates the new rate using the
standard EWMA equation with smoothing parameterα (see
Equation 4). The receiver sends the updated rate to the sender
in the acknowledgments.

new rate = old rate ∗ α + new est rate ∗ (1 − α) (4)

As mentioned earlier, packet-pairs measure the bottleneck
bandwidth, which typically is higher than the available
bandwidth of the network. As a result, the rates chosen by
XRTP in (4) can be greater than its fair share, and may
lead to congestion. To prevent this, XRTP incorporates a
congestion avoidance mechanism. Since XRTP sources send
data packets at regular intervals, they are expected to be
received at regular intervals; in other words, the inter-arrival
time between packets at the receiver should ideally be equal
to the inter-sending time of the corresponding packets at
the sender. In reality, the inter-sending time may not equal
the inter-reception time due to queuing delays and the
presence of other flows. Observe that the difference between
inter-reception time and inter-sending time, also calledjitter,
is an indication of the congestion trend in the network.
XRTP keeps track of this jitter, and suitably regulates the
transmission rate to remain close to the flow’s fair share of
bandwidth. The rate control mechanism is discussed next.

Quantitatively, let the reception time of thenth packet,trn,
be the sum of the time it was sent,tsn, and the transmission
time,ttn (i.e.,trn = tsn+ttn). Transmission time can be divided
into two components, propagation time,ptn, and queue time,
qn (at the routers), i.e., (ttn = ptn + qn). If the routes are not
changing, propagation time,ptn, is almost constant since it

5

time of packet 2

transmission time

actual time taken

of the packet

by the packet.

positive jitter negative jitter

2 3

332211

1/rate

Receiver

Sender

Trans− estimated receive time
mission

Delay
of packet 2

actual receive

Fig. 3. Jitter caused by varying queuing delay. Positive jitter arises when the
latter packet gets more delayed than the earlier. Negative jitter arises when it
is the vice versa.

only depends on the transmission speed of the media. Queue
time, qn, mainly includes (i) the time the packets wait to be
processed and (ii) the negligible processing time.
As the network load increases, a packet in transmission will
experience longer wait times at the router, resulting in longer
end-to-end transmission times. On the other hand, as network
load decreases, end-to-end transmission time will decrease
to the limits of the propagation delay on the transmission
medium. The inter-reception time between two consecutive
packetsn − 1 and n, denoted byirtn is given by Equa-
tion (5). Substituting each of the right hand side terms using
(trn = tsn + ttn), we get Equation (6) for inter-reception time.

irtn = trn − trn−1 (5)

irtn = (ttn − ttn−1) + tsn − tsn−1 (6)

Since the time the packets were sent is known, the term
(tsn − tsn−1) can be subtracted from Equation (6) giving us
a measure of network load as shown in Equation (7). Thus,
jitter is governed by the difference in packet travel time. Now
assuming that propagation time is constant for all packets,the
only variant is the queuing time as shown in Equation (9). A
varying queuing time (measured as jitter at the destination)
can be used as an indicator of network congestion.

jittern = (ttn − ttn−1) (7)

jittern = (ptn − ptn−1) + (qn − qn−1) (8)

jittern = qn − qn−1 (9)

XRTP uses timestamps to determine the sending time.
Therefore, the jitter for thenth packet can be computed as
jitter = (trn − trn−1) − (tsn − tsn−1).

In general, jitter can be negative, positive, or zero. Figure 3
pictorially illustrates the computation of jitter. Negative jitter
can arise when the(n)th packet gets less delayed than the
(n−1)th packet. Positive jitter happens for the vice versa. Ideal
or zero jitter indicates that the network congestion remains
unchanged over the time scale of consecutive packets. Positive
jitter implies increasing queue lengths and occurs when the
cumulative rate of all flows is greater than the capacity of

function loss discrimination(packet p)
if history of positive jitters followed by
missing pkt followed by negative jitterthen

LOSS = CONGESTION
else

// estimate the network congestion
p = curROTT−minROTT

maxROTT−minROTT

if p ≥ threshold and l1 out of last
n ROTT was over deviationthen

LOSS = CONGESTION
else

LOSS = TRANSMISSION
end if

end if
end function

Fig. 4. Loss Discrimination algorithm – when jitter sequences appear to
imply a transmission loss, XRTP resorts to precautionary checks.

some link along the path – an early indication of unfair use
of bandwidth. Therefore, positive jitters trigger congestion
avoidance and cause XRTP to reduce its transmission rate at
the source. To be conservative, XRTP cuts downs its rate based
on the average of the history of the past three positive jitters.

new rate − =
3

∑

of past 3 positive jitters
(10)

XRTP reacts to congestion losses by cutting its rate in half.

D. Loss Discrimination

The above discussion presents how the spacing between
explicit packet-pair probes, and the jitter between data packets,
can be jointly used to perform rate and congestion control
in XRTP. However, the performance of congestion control
will also depend on the accuracy of loss discrimination. For
this, whenever the XRTP receiver discovers a missing packet,
it attempts to classify its cause by looking into the history
of jitter measurements. Recall that positive jitter indicates
growing congestion in the network. If a congested buffer
overflows, a packet will be dropped, causing the preceding and
following packets to get closer in the buffer. Thus, the XRTP
receiver will notice negative jitter for the packet received
after the congestion loss. However, a negative jitter may also
indicate an unloading network (that happens when XRTP
sources reduce their transmission rates). To differentiate
between negative jitter due to a congestion loss and negative
jitter due to network unloading, XRTP analyses the sequence
of jitters before and after the missing packet.Thus, positive
jitter (before the missing packet) followed by negative jitter
(after the missing packet) is interpreted as a congestion loss.
False alarms are possible because a transmission loss will
also cause two (preceding and following) packets to come
closer during transit. Thus, XRTP may react to a transmission
loss as if it were congestion loss, reducing the sending rate.

6

TCP/XRTP/TFRC Sources

R1

CBR Traffic Sources

l1 l2R2

CBR Traffic Sinks

Wired Wireless
Wired

Network

TFRC Sink
TCP/XRTP/

Fig. 5. The structure of the topology used for simulation. Link l1 represents
a wired network, with R1 as the traffic sender. Link l2 represents a wireless
link with the sink as the wireless receiver. The gray traffic sources initiate
CBR cross traffic that terminate at the gray sinks.

However, since MAC protocols like IEEE 802.11 typically
implement retransmission schemes for transmission losses,
the time consumed for multiple retransmissions can often
reduce (and even eliminate) negative jitter3. This reduces the
frequency of false alarms.

Although useful, such a technique may not offer sufficient
loss discrimination accuracy. This is because the empty slot
from a congestion loss can get occupied by packets from cross
traffic (instead of the packet following the congestion loss). In
other words, the time compression caused by a dropped packet
may not translate into a negative jitter. As a result, what
seems like a transmission loss may well be a congestion loss.
This misclassification can be serious, because XRTP will not
reduce its offered load even though the network is congested.
To handle such cases, we favor a conservative approach.
When the analysis of jitter sequences indicate that the lossin
question is due to transmission, XRTP resorts to additional
precautionary mechanism as follows. XRTP incorporates the
relative one-way trip times (ROTT) [25] and the deviation of
ROTT [20] into the heuristic. XRTP determines the ratio of
the difference between current and minimum ROTT to the
difference between maximum and minimum ROTT. XRTP
compares this ratio (i.e.,currROTT − minROTT

maxROTT − minROTT
) with a

threshold to determine the condition of the network when
the packet loss occurred [20]. The congestion in the network
directly correlates to this ratio, and XRTP uses it to improve
the confidence of loss estimation. The sketch of the loss
discrimination heuristic is presented in Figure 4.

IV. PERFORMANCEEVALUATION

We simulate XRTP over a wired-wireless network and
evaluate (1) bandwidth estimation, (2) rate/congestion control,
and (3) loss discrimination. The simulations are performedin
the ns-2 simulator (version 2.26). However, we also generate
traces from a real wireless LAN testbed to feed the simulation.

3Observe that CSMA/CA protocols like IEEE 802.11 will retransmit after
allowing other transmitters in the vicinity to send their own packets. In
addition, each re-transmission will be preceded with a random backoff, RTS,
CTS, and followed by an ACK packet. The sum of all these durations is fairly
long.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

B
an

dw
id

th
 (

M
bp

s)

Time (seconds)

Ideal Estimate
Actual Measured
KDE O(n-square)

KDE O(n)
EWMA alpha=0.8

Fig. 6. Bandwidth estimation using KDE and EWMA.

 0

 2

 4

 6

 8

 10

 12

 14

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

B
an

dw
id

th
 (

M
bp

s)

Time (seconds)

Ideal Estimate
Actual Measured
KDE O(n-square)

KDE O(n)
EWMA alpha=0.8

Fig. 7. Snapshot of bandwidth estimation in wireless network.

Figure 5 shows the network topology used – routerR1 has
traffic sources using XRTP, TCP, TFRC and TCP-Westwood.
The last hop link,l2, is the wireless link with a bandwidth of 2
Mbps. The wireless MAC protocol used is IEEE 802.11. The
wired link, l1, connects the internal network infrastructure to
the wireless router,R2. Link l1 and all other links connecting
the sources to R1 have a bandwidth of 10Mbps. The packet
loss rate varies from 0% to 5% on the wireless link. The cross-
traffic sources and sinks are either CBR or TCP flows, and are
randomly switched on and off during the simulations, creating
a variety of congestion scenarios. Each simulation is run for
200 seconds. The results are averaged over 500 simulation
runs each.

A. Comparing bandwidth estimation using EWMA and KDE

We demonstrate the efficacy of an optimized KDE
algorithm to estimate bottleneck bandwidth. Since bandwidth
estimation in ns2 is unrealistically accurate due to the use
of a virtual clock4, we generated traces from running the
packet-pair algorithm on a real wireless LAN by sending
packet-pairs every 30 ms. The traces were used as input to

4We will discuss this in more detail in Section V.

7

 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5

Th
ro

ug
hp

ut
 (k

bp
s)

Loss in Percentage

XRTP PD
XRTP

XRTP ND
 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5

Th
ro

ug
hp

ut
 (k

bp
s)

Loss in Percentage

TCP Newreno
TFRC

TCP Westwood

Fig. 8. Performance of XRTP and other flows in isolation.

compare EWMA (withα set to 0.6 and 0.8) and KDE (with
n = 8).

Figure 6 represents estimates obtained for these algorithms
for one set of generated traces. In this particular scenario, the
bandwidth is 11Mbps from 0 to 2 seconds, falls to 2Mbps for
2 to 4 seconds, and increases back to 11Mbps till 5 seconds.
As expected, the algorithms have less variance than the actual
measured value (see Figure 6). In comparison to EWMA, both
the KDE algorithms are quicker to adapt to the fall in data-
rate. A zoom-in view of Figure 6 is presented in Figure 7.
Observe that EWMA overshoots the channel bandwidth at
1.92 and at 2.01 seconds forα set to 0.6. However, both KDE
algorithms filter out such spurious estimates and stay close
to the channel capacity, proving better agility in bottleneck
bandwidth estimation. Moreover, the KDEO(n) algorithm
performs comparably to the KDEO(n2).

B. Evaluation of XRTP’s loss discrimination heuristics

The effectiveness of XRTP’s loss discrimination techniques
is based on the accuracy of the discrimination heuristics.
The misclassification of a loss can adversely affect the
throughput of the stream or increase congestion in the
network. Therefore, we evaluate the probability of each
type of misclassification. The goal of the simulations in this
subsection is to determine the upper bounds on throughput
and the probability of misclassification.

We compare XRTP’s loss discrimination heuristic with
the best and worst cases in loss discrimination. For the best
case, we run XRTP withperfect discriminationknowledge
(XRTP-PD); for the worst case, we run XRTP withno
discrimination at all (XRTP-ND). We also contrast these
results with TCP Newreno, TFRC and TCP Westwood, each
run separately for increasing loss rates, varying between 0%
to 5%. Results are presented in Figure 8. As expected, the
throughput of TCP Newreno, TFRC, TCP Westwood and
XRTP-ND falls rapidly with increasing loss rate, since every
transmission loss is considered a congestion loss causing the
protocols to back off. XRTP, however, performs very close
to XRTP-PD; the two lines for XRTP-PD and XRTP are

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5

Th
ro

ug
hp

ut
 (k

bp
s)

Loss in Percentage

XRTP PD
XRTP

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5

Th
ro

ug
hp

ut
 (k

bp
s)

Loss in Percentage

XRTP ND
TCP Newreno

TFRC
TCP Westwood

Fig. 9. Performance of XRTP in the presence of CBR cross traffic.

indistinguishable.

In the next experiment (see Figure 9), XRTP is again run
with the same three configurations, but with cross traffic of
CBR flows that cumulatively use 1Mbps of the bandwidth
on Link l2. As in the previous simulation, TCP Newreno,
TFRC, TCP Westwood and XRTP-ND are seriously impaired
by losses due to transmission while XRTP keeps up with
XRTP-PD in terms of throughput.

To clearly understand how XRTP is always able to maintain
bandwidth close to 1Mbps even with increasing channel loss,
it is necessary to look at the losses and understand how the
protocol discriminated them. Table I depicts the performance
of the loss discriminator used in XRTP.

• Column 1 represents the loss rate on wireless Linkl2 in
percentage.

• Column 2 represents the average of the total number of
packet losses across the simulations.

• Columns 3 through 10 represent the loss discrimination
done by XRTP in percentages against the actual cause
of packet loss. For example, column 4 is denoted byC |
T and is read as “the percentage of total losses that the
heuristic discriminated as congestion loss given the loss
was actually a transmission loss”.

• Columns 3 through 6 are loss discriminations that did not
affect XRTP’s congestion control (i.e., occurred during
the congestion avoidance phase).

• Columns 7 through 10 are loss discriminations that
caused XRTP to cut its rate by half.

Notice that the number of congestion losses that caused
XRTP to reduce its rate is almost constant (the sum of columns
7 and 8 times column 2). Thus, the throughput of XRTP re-
mains fairly constant even with increasing transmission losses.
Also, as transmission loss rates increase, XRTP misclassifies a
larger percentage of transmission losses as congestion losses.
However, there were no congestion losses that were classified
as transmission losses. The reasons can be attributed to the
ideal simulation environment presented by ns2. The bottleneck

8

TABLE I
LOSS DISCRIMINATIONHEURISTICS. XRTP WITH CBR. (CDENOTES CONGESTION, AND T DENOTES TRANSMISSION). FOR EXAMPLE, C|T DENOTES

PERCENTAGE OF TRANSMISSION LOSSES CLASSIFIED AS CONGESTION LOSSES.

1 2 3 4 5 6 7 8 9 10
Loss TOTAL C|C C|T T|C T|T C|C C|T T|C T|T

0 806 82.63 0 0 0 17.36 0 0 0
0.01 788 82.23 0 0 0 17.63 0 0 0.12
0.02 778 80.97 0.12 0 0 17.99 0.25 0 0.64
0.05 795 81.38 0.62 0 0 16.1 0.75 0 1.13
0.1 785 78.98 0.63 0 0.12 17.83 0.63 0 1.78
0.2 761 75.29 1.83 0 0.13 17.87 1.83 0 3.02
0.5 828 70.41 4.22 0 0.72 14.13 4.1 0 6.4
1.0 864 59.83 7.06 0 1.38 10.41 7.63 0 13.65
2.0 1023 36.65 14.95 0 3.51 5.57 10.36 0 28.93
5.0 1346 12.18 17.53 0 6.53 1.41 9.5 0 52.82

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5

Th
ro

ug
hp

ut
 (k

bp
s)

Loss in Percentage

XRTP
TCP Newreno

Fig. 10. XRTP versus TCP Newreno with CBR traffic of 1 Mbps.

routerR2 is set with a buffer which is a multiple of twice the
delay-bandwidth product of linkl2. Thus, the CBR flows in
the worst case fills only half of the queue since they are using
half of the bandwidth. Also, XRTP gets the remaining queue
space in the router and all the characteristics required forthe
heuristic are maintained causing no misclassification of con-
gestion loss. In other scenarios (as shown later), there could be
misclassification of congestion losses as transmission losses,
but it would be very small compared to misclassification of
transmission losses as congestion losses since the parameters
of the heuristic are set to conservative values.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5

Th
ro

ug
hp

ut
 (k

bp
s)

Loss in Percentage

XRTP
TCP Newreno

Fig. 11. Four flows of XRTP against four flows of TCP Newreno.

C. Evaluating XRTP in presence of competing cross traffic

Figure 10 shows the throughput for a single XRTP flow
competing with a single TCP Newreno flow with background
CBR flows that cumulatively use 1Mbps of linkl2. The graph
depicts the throughput of each flow as the loss rate on the
wireless link increases. Figure 10 clearly shows improved
performance of XRTP, mainly due to accurate classification
of transmission losses, and infrequent errors in classifying
congestion losses.It is important to notice that even though
the throughput of XRTP is increasing with an increase in loss
rate over the wireless link, XRTP is actually utilizing only
that extra bandwidth that is made available by TCP-NewReno
since TCP-NewReno is reacting to transmission losses as
congestion losses.This insight can be deduced from Table II.

With increasing loss rates, the percentage of congestion
losses (sum of columns 3 and 7) is decreasing, implying
that TCP is reacting to transmission losses, while XRTP
is able to discriminate them as transmission loss. Table II
also shows how XRTP actively uses congestion avoidance to
prevent packet losses. The total number of packets lost due
to congestion rapidly falls with increasing loss rates, implying
that XRTP is aware of the other flows in the network. Consider
the simulation with loss rate of 2%. The total number of losses
classified as congestion that affected XRTP is about 15 packets
(6% of 255) for the whole 200 second simulation although
the throughput averaged around 650Kbps. Comparing it with
Table I for the same loss rate of 2%, the total number of
losses classified as congestion losses that affected XRTP is
about 92 packets (9% of 1023) while the throughput is about
1000Kbps. This suggests that XRTP’s proactive congestion
avoidance plays an important role in adapting the protocol in
the presence of competing flows.

As an evaluation of XRTP in the presence of cross-traffic,
Figures 11, 12 and 13 show the results from simulation
scenarios with four flows of XRTP competing with four flows
of TCP Newreno, TFRC or TCP Westwood, respectively. Even
with increasing loss rates, XRTP flows only use the unused
bandwidth made available by the competing flows. Hence, the
figures show that the graphs are smooth lines with XRTP’s cu-
mulative throughput only increasing by a fraction comparedto
the throughput without loss. The throughput of the competing
flows fall due to the absence of loss discrimination. This also

9

TABLE II
LOSS DISCRIMINATION STATISTICS OFXRTP AND TCPRESPECTIVELY(C DENOTES CONGESTION, AND T DENOTES TRANSMISSION). FOR EXAMPLE,

C|T DENOTES PERCENTAGE OF TRANSMISSION LOSSES CLASSIFIED AS CONGESTION LOSSES.

1 2 3 4 5 6 7 8 9 10
Loss Rate Total Losses C|C C|T T|C T|T C|C C|T T|C T|T

0 128 54.68 0 0 0 44.53 0 0.78 0
0.01 127 51.96 0 0 0 44.09 0 3.14 0.78
0.02 144 60.41 0 0 0 36.11 0.69 2.08 0.69
0.05 100 48 0 0 0 47 2 1 2
0.1 108 42.59 0 0 0 42.59 7.4 2.77 4.62
0.2 93 40.86 1.07 0 0 35.48 7.52 1.07 13.97
0.5 106 21.69 6.6 0 0.94 19.81 16.03 0 34.9
1 152 2.63 3.28 0 1.97 3.94 19.07 0 69.07
2 255 0 0.78 0 1.17 0 5.88 0 92.15
5 719 0 0.69 0 0.13 0 1.52 0 97.63

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5

Th
ro

ug
hp

ut
 (k

bp
s)

Loss in Percentage

XRTP
TFRC

Fig. 12. Four flows of XRTP against four flows of TFRC.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5

Th
ro

ug
hp

ut
 (k

bp
s)

Loss in Percentage

XRTP
TCP Westwood

Fig. 13. Four flows of XRTP against four flows of TCP Westwood.

implies that loss discrimination is working accurately with
negligible misclassification even in the presence of multiple
flows. As discussed earlier, XRTP depends on continuous
feedback about network conditions through jitter, to be fair to
other flows (i.e., XRTP needs to send sufficient packets in each
RTT to determine the network condition). Thus, in scenarios,
where XRTP is not able to send sufficient packets per RTT, it
could behave aggressively to TCP or other competing flows.

V. D ISCUSSION

Effect of Clock Granularity

XRTP, like other rate-based protocols, is sensitive to the
precision of the operating system’s internal clock. The timer

��������������������������
��������������������������
��������������������������
��������������������������

������
������
������
������

��
��
��
��

��
��
��
��

��
��
��
��

Transmission
Delay

Receiver

Sender

time

Clock Resolution

1/rate

Packet Bunch

(−ve) Jitter

(+ve) Jitter

Interpacket Gap = packet_size/bottleneck bandwidth

Fig. 14. Jitters caused by variance in propagation delay using coarse grained
timer

resolution is about 10 milliseconds (called a jiffy) on a stable
Linux system. Ideally, we would like one packet to be sent or
received at each jiffy, else packets would bunch at the sender or
receiver causing erroneous estimation of jitter and bandwidth.
Under the constraint of a timer with 10 milliseconds timeout,
XRTP would perform optimally when bottleneck bandwidth
is less than 20 Mbps based on the largest packet size. Finer
granularity in the timer is available in certain flavors of
Linux (such as KURT Linux [26]). With 1 millisecond jiffies,
the bottleneck bandwidth can be in the order of 200 Mbps.
While we believe that XRTP will operate well under such
conditions, higher clock granularity causes systems to expend
more energy, which is not desirable. Figure 14 explains the
effect of coarse-grained timers on jitter. As a part of our future
work, we plan to investigate mechanisms to enhance XRTP for
high-granularity clocks.

Choice of parameters in XRTP

The choice ofα in the EWMA equation for rate control
was chosen to be0.8. This value was chosen empirically,
after simulating the network under various scenarios, and
observing the sensitivity toα. As a part of our future work,
we intend to choose the value ofα through an analytical
framework.

The congestion control mechanism, based on the history
of 3 jitters, is also empirical. From our simulations with

10

different number of jitter observations, we noticed that 3
jitters offer consistently higher performance. Nevertheless,
these parameters need to be chosen more formally. Our initial
attempts toward this direction shows that modeling the impact
of different number of jitters on XRTP is mathematically
very complicated (like several other functions at the transport
layer). We are currently investigating the choice of these
parameters in a setting with simplified assumptions.

Potential deployment scenarios

While we designed and developed a transport protocol that
is works well with TCP flows, as well as smoothen the
transmission rate in a lossy wireless environment, it is obvious
that it is only suitable in environments, where both the servers
and the clients support the XRTP protocol. An example of
an emerging application that can use the XRTP protocol is
the mobile phone browserwhere service providers provide
proxy servers that allows users to access the Web on mobile
phones that would normally be incapable of running a Web
browser. Other streaming applications such as internet radio
stations or internet TV stations are potential candidates that are
trying to capture the mobile market. Many of the newer mobile
handsets support 802.11bg connectivity and WiFi hotspots are
on a upswing. We believe that XRTP type rate-based protocols
have a potential in such markets. The service providers would
be unburdened from the task of developing UDP streaming
protocols to support their services. The mobile phones would
be unburdened from installing large number of applications
to obtain services as they are limited in their processing
and memory capabilities. The underlying networks would be
unburdened by rogue (UDP) flows that are unfriendly to other
data flows.

VI. CONCLUSION

In this paper, we propose a rate-based transport protocol
(XRTP) for lossy wireless networks. The protocol suggests
a mechanism that discriminates packet losses based on
the spacing between packets that arrive at the destination.
The sequence of observed spacings and efficient statistical
filtering are also shown to be useful for bandwidth estimation.
Bandwidth estimation and loss discrimination are in turn used
for continuous congestion control, leading to a constructive
synergy between the transport layer components. Simulation
results show that XRTP copes well with the dynamic changes
in network bandwidth, and achieves fairly accurate loss
discrimination for a lossy wireless channel. Also, XRTP
is TCP friendly, and does not use up an unfair share of
the network bandwidth. While the results are encouraging,
we believe that further evaluation is necessary to prove the
efficacy of XRTP under complex internet-like topologies.
We are also implementing XRTP in the Linux operating
system to understand it’s performance in real wired-wireless
environments.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” inSymposium pro-
ceedings on Communications architectures and protocols -SIGCOMM,
1988.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving
TCP/IP performance over wireless networks,” inMOBICOM, 1995.

[3] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,”
in ICDCS, 1995.

[4] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP
westwood: Bandwidth estimation for enhanced transport over wireless
links,” in MOBICOM, 2001.

[5] R. Krishnan, M. Allman, C. Partridge, J. P.G. Sterbenz, and W. Ivancic,
“Explicit transport error notification (ETEN) for error-prone wireless and
satellite networks - summary,” inEarth Science Technology Conference,
2002.

[6] S. Alfredsson and A. Brunstrom, “TCP-L: Allowing bit errors in wireless
TCP,” Proceedings of IST Mobile and Wireless Communications Summit
2003, June 2003.

[7] J Eklund and A. Brunstrom, “Impact of sack delay and link delay
on failover performance in sctp,” inProceedings of 3rd International
Conference on Communications and Computer Networks (IC3N06),
October 2006.

[8] A. Chockalingam and Michele Zorzi, “Wireless tcp performance with
link layer fec/arq,” .

[9] H. Hsieh, K. Kim, Y. Zhu, and R. Sivakumar, “A receiver-centric trans-
port protocol for mobile hosts with heterogeneous wirelessinterfaces,”
2003.

[10] H. Balakrishnan and R. H. Katz, “Explicit loss notification and wireless
web performance,”GLOBECOM, 1998.

[11] S. Floyd, “TCP and explicit congestion notification,”ACM Computer
Communication Review, vol. 24, no. 5, 1994.

[12] R. Rejaie, M. Handley, and D. Estrin, “Rap : An end-to-end rate-based
congestion control mechanism for realtime streams in the internet,” in
INFOCOM, 1999.

[13] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, “A modelbased
TCP-friendly rate control protocol,” inNetwork and Operating System
Support for Digital Audio and Video - NOSSDAV, 1999.

[14] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and
V. Bharghavan, “WTCP: A reliable transport protocol for wireless wide-
area networks,”Wireless Networks, vol. 8, 2002.

[15] V. Paxson, “Automated packet trace analysis of TCP implementations,”
in SIGCOMM, 1997.

[16] R. L. Carter and M. Crovella, “Measuring bottleneck link speed in
packet-switched networks.,”Performance Evaluation, vol. 27/28, 1996.

[17] K. I. Lai, Measuring the Bandwidth of Packet Switched Network, Ph.D.
thesis, Standford University, 2002.

[18] Karthikeyan Sundaresan, Vaidyanathan Anantharaman,Hung-Yun
Hsieh, and Raghupathy Sivakumar, “Atp: a reliable transport protocol
for ad-hoc networks,” inMobiHoc ’03: Proceedings of the 4th ACM
international symposium on Mobile ad hoc networking & computing,
New York, NY, USA, 2003, pp. 64–75, ACM Press.

[19] S. Biaz and N. Vaidya, “Discriminating congestion losses from wireless
losses using inter-arrival times at the receiver,” inASSET, 1999.

[20] D. Barman and I. Matta, “Effectiveness of loss labelingin improving
TCP performance in wired/wireless networks,” inICNP, 2002.

[21] N. Samaraweera, “Non-congestion packet loss detection for TCP error
recovery using wireless links,” inIEEE Proceedings of Communications,
1999, vol. 146.

[22] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-
mance of TCP pacing,” inINFOCOM, 2000.

[23] S. Keshav, “A control-theoretic approach to flow control,” SIGCOMM,
vol. 25, 1995.

[24] B. W. Silverman, Density Estimation for Statistics and Data Analysis,
Chapman and Hall, 1986.

[25] N. Samaraweera and G. Fairhurst, “Explicit loss indication and accurate
RTO estimation for TCP error recovery using satellite links,” in In IEE
Proceedings - Communications, 1997.

[26] Balaji Srinivasan, Shyamalan Pather Robert, Hill Furguan Ansari, and
Douglas Niehaus, “A firm real-time system implementation using com-
mercial off-the-shelf hardware and free software,”4th IEEE Symposium
on Real-time Technology and Applications,, 1998.

